5 trends in AI for 2019

It´s not easy to project trends in a market evolving as rapidly as AI. However, through analysis of cross-industry data and experience with a diverse client-base, we’re willing to make some bets. From automating mundane daily tasks to leveraging computer vision for more accurate medical diagnoses, here are 5 trends in AI we expect to emerge in 2019. 

TREND 1: “EDGY” AI 

Edge AI refers to processing AI algorithms locally instead of relying on cloud services or data centers. 

Smartphones, cars, and wearable devices are examples of devices that need to make faster and more accurate real-time decisions. Autonomous vehicles, for instance, need to make hundreds of decisions per second – brake, accelerate, turn on lights, identify and interpret traffic patterns, signals, and speed limits – all while simultaneously responding to the driver’s voice commands. These decisions must take place in a fraction of a second, and they need to be independent of the connectivity issues that come with cloud computing.  This means that autonomous vehicles need powerful chips to process all this information rapidly and accurately.  

Tech leaders like Nvidia, Qualcomm, Apple, AMD, and ARM are investing in developing and delivering chips that can handle these kinds of workloads. 

In 2019 we’ll see more models being deployed at the edge as well as specialized chips allowing AI models to operate independently from the centralized cloud, or on the “edge” if you prefer.

TREND 2: AI IN HEALTHCARE 

 Last year the FDA (U.S. Food and Drug Administration) approved IDx-DR, an AI-enabled software that can independently diagnose diabetic retinopathy before severe complications (such as blindness) emerge.  

The FDA also cleared Dip.io, a product developed by startup Healthy.io, as a class II medical device. This diagnostic tool can monitor urinary tract infections and track pregnancy-related complications by analyzing photos of dipstick urine tests. It’s as simple as uploading a photo, the model takes it from there.   

2019 will be a remarkable year for AI in healthcare. 

TREND 3: PREDICTIVE MAINTENANCE 

Equipment failure is one of the main causes of production downtime, a huge line-item for any asset-intensive business. However, today maintenance teams spend 80% of their time collecting data but only 20% analyzing it.  

Factory and field equipment generate mountains of unleveraged data that could go a long way to solving these issues. Alongside cameras and sensors, ML-driven algorithms can learn to check assets’ “vital signs,” catch small irregularities (a loose screw) before they turn into larger ones (a damaged turbine) and provide productivity predictions, allowing firms to plan accordingly.      

With sensors becoming more affordable, and edge computing gaining momentum, machine learning will become even more heavily incorporated in industrial processes in 2019. 

TREND 4: CONVERSATIONAL AI 

We say conversational AI, what pops into your head?  If it’s chatbots, you’re not alone. While that’s certainly a huge part, the technology is much broader as it is integrated across messaging apps and voice-enabled virtual assistants who go far beyond the scope of chatbots.    

In 2019 we can expect to see even more AI deployed to handle routine customer service interactions. Whether you’re booking a flight, searching for a new restaurant or requesting the arrival date of your next purchase, AI can assist you.   

Research from eMarketer shows that this year 66.6 million Americans are expected to use speech or voice recognition technology. Banking and retail are great examples of industries already using conversational AI initiatives, and as the technology continues to mature in 2019, we expect to see even more use cases in even more industries.

TREND 5: RPA / BACK OFFICE AUTOMATION 

RPA (Robot Process Automation) covers a variety of back-office tasks that can be automated by bots. It’s not a new concept, nor is it AI. But here are some interesting facts:   

  • According to McKinsey, RPA will have an economic impact of around $6.7 trillion by 2025.   
  • Forrester Research also mentioned that RPA market is estimated to grow to $2.1 billion by 2021.  

Although RPA is not considered AI – since it’s rule-based and can’t learn anything on its own – there’s been a collaboration between RPA and AI.  Due to its capacity of automating repetitive and time-consuming tasks, RPA can save employees tons of time, at the same time it can ensure processes are running smoothly and precisely. On the other hand, AI can enhance RPA.  

For instance, take a bank that’s onboarding a new client and needs to adhere to Know Your Customer/Anti Money Laundering Compliance Regulation. RPA is great for doing a lot of manual work. What AI can do is analyze the data the RPA’s pull in a more sophisticated manner, and arm a Compliance officer with more useful information.  

Whether there is a need to automate processes or implement solutions in this field, RPA has been mainly leveraged by large companies – until now. In 2019 we can expect to see small and medium-size businesses starting to adopt RPA, due to its clear benefits and increased popularity.  

Daniela Braga’s journey with DefinedCrowd

Earlier this week, DefinedCrowd was Featured in Jornal Económico, a premium financial publication in Portugal. We’ve translated the article from the original Portuguese for our English- speaking friends. Enjoy!

Original Article by
António Sarmento

Founded in Seattle, USA, DefinedCrowd is a startup specializing in training data for Artificial Intelligence. The company counts Amazon, IBM, and EDP as investors and clients. 

DefinedCrowd provides services so that data scientists can gather, structure, and enrich datasets for Artificial Intelligence, helping companies improve speed to market and the overall quality of their AI products. DefinedCrowd accelerates enterprise AI initiatives by combining machine learning technology with human-in-the-loop collection processes. Founded in August 2015 by entrepreneur Daniela Braga, the company is headquartered in Seattle, has R&D centers in Lisbon and Porto, and a sales office in Tokyo. 

Three months after its founding, the company opened their first R&D office at Startup Lisbon. Since then, DefinedCrowd has blossomed from an initial team of three employees to a workforce of more than 70 that is still growing.

In 2016, the company raised $ 1.1 million in seed funding, with investors such as Sony, Amazon Alexa Fund, Portugal Ventures, and Busy Angels.
In July 2018, DefinedCrowd closed a Series A funding worth $11.8 million, led by Evolution Equity Partners. EDP Ventures, Mastercard and Kibo Ventures joined as new investors, while Sony, Amazon, Portugal Ventures and Busy Angels bolstered their investments with additional capital for the data company.

“It is important to raise capital if we want to move fast, especially in the technological sector.”   

Daniela Braga to Jornal Económico

This influx of capital is being used to accelerate product development and accelerate team growth. Two-thirds of DefinedCrowd’s 70 employees work out of Portugal. The company expects to add 80 more team members by the end of 2019.

Over the past six months, DefinedCrowd has announced three partnerships: a formal designation as an Amazon Alexa Skills partner, a product integration with IBM Watson Studio; and participation as a featured vendor in Microsoft‘s co-sell program.

DefinedCrowd’s platform provides industry-agnostic data services and can support text, audio, and image annotation. The company’s clients span industries as a result: from Fintech, to Retail, Healthcare, Utilities, and the Internet of Things. Their client portfolio consists mostly of Fortune 500 companies, including BMW, MasterCard, EDP, José de Mello Saúde, SoftBank, Yahoo Japan, Randstad, and Nuance

DefinedCrowd’s goals are ambitious. The company aims to become the world’s number one AI data provider through expanding their client-base and forging new partnerships with industry leaders. 

With a degree in Portuguese Language and Literature, Daniela Braga has spent her career examining the rigorous use of language, the perfect foundation for her business. “We deal daily with data in 70 languages and dialects. Our clients need, at a minimum, native-level speakers and sometimes even require linguists or specialists in language sciences for all of them” says the entrepreneur.

After graduating with a master’s degree in applied linguistics, she went on to earn a PhD in Speech Technologies at the Faculty of Engineering at the University of Porto and taught at the University of A Coruña for two years before joining Microsoft (whom she worked for in Portugal, China and the United States).

After leaving Microsoft in 2013, Daniela moved to American company Voicebox. Simultaneously, she was invited to teach Data and Crowdsourcing for Speech Technologies at the University of Washington. It was during this time that she saw the gap between the Artificial Intelligence data scientists wanted to develop and the training data available to build it. She decided to found her own company as a result.

Waving a well-paid job goodbye, and with few personal resources, she started meeting with investors in Seattle, and quickly received an initial check: $ 200,000 in financing to start her business. A business that is now signing contracts with some of the largest companies in the world.

DefinedCrowd is in constant growth and employee numbers have been updated to reflect our current position.